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Fluorescence in situ hybridization, spectral karyotyping, multiplex fluorescence in situ 
hybridization, comparative genomic hybridization, and more recently array comparative 
genomic hybridization, represent advancements in the field of molecular cytogenetics. 
The application of these techniques for the analysis of specimens from humans, or mouse 
models of human diseases, enables one to reliably identify and characterize complex 
chromosomal rearrangements resulting in alterations of the genome. As each of these 
techniques has advantages and limitations, a comprehensive analysis of cytogenetic 
aberrations can be accomplished through the utilization of a combination approach. As 
such, analyses of specific tumor types have proven invaluable in the identification of new 
tumor-specific chromosomal aberrations and imbalances (aneuploidy), as well as regions 
containing tumor-specific gene targets. Application of these techniques has already 
improved the classification of tumors into distinct categories, with the hope that this will 
lead to more tailored treatment strategies. These techniques, in particular the application 
of tumor-specific fluorescence in situ hybridization probes to interphase nuclei, are also 
powerful tools for the early identification of premalignant lesions.
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Identification of recurrent chromosome rear-
rangements plays a critical role in the diagnosis
and prognosis of malignancy [1]. Leukemias
and lymphomas are frequently characterized
by recurrent chromosome breakpoints [2]. The
identification of specific translocations in
many of these malignancies has made the clon-
ing of specific genes that undergo deregulation
or are spliced together resulting in the produc-
tion of a fusion protein possible. Both of these
genetic alterations induce malignancy. In con-
trast, most solid tumors are defined by a spe-
cific pattern of chromosome gains and losses
that are tumor type specific [2].

Conventional cytogenetics and molecular
biology have each played an important role in
the identification of such chromosomal aberra-
tions. The advent of differential staining tech-
niques has permitted more precise identification
of chromosomes based on their banding pat-
terns [3–5]. Since then, these techniques have
been widely used to characterize cytogenetic
abnormalities in tumor cells. The identification
of either genomic imbalances or translocation

junctions has been used as an entry point for the
identification of cancer-causing genes [1]. How-
ever, the sometimes poor quality of metaphase
chromosomes, contamination of specimens by
fibroblasts, selective growth of subclones not
representative of the in vivo tumor, the inability
to obtain mitotic cells and the sheer number of
complex cytogenetic abnormalities have all
complicated the accurate analysis of tumor
genomes. Genetically engineered mice have also
been increasingly employed as a model system
for human cancer. Identifying and arranging
mouse chromosomes into a karyotype, even in
normal nontumorigenic cells, is complicated by
the fact that mouse chromosomes are all acro-
centric (i.e., the centromere resides at one end of
the chromosome rather than interstitially as for
most human chromosomes) and are relatively
uniform in size. Thus, the above limitations in
the use of conventional cytogenetic and mole-
cular biologic techniques make it clear that fur-
ther development of cytogenetic tools would
facilitate the comprehensive identification of
chromosomal aberrations.
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The introduction of molecular cytogenetic techniques such
as fluorescence in situ hybridization (FISH), comparative
genomic hybridization (CGH) and spectral karyotyping
(SKY)/multifluor FISH (M-FISH) has helped overcome some
of the limitations of chromosome banding techniques [6–10].
For example, FISH has permitted the identification of translo-
cations that were not previously observed by banding [11].
FISH hybridization can also be applied to interphase nuclei
[12], enabling one to screen large numbers of cells and identify
copy number changes in a small subpopulation, thus providing
the opportunity to identify early lesions [13]. Likewise, the
application of CGH to solid tumors has led to the identifica-
tion of recurring patterns of genomic imbalances, both for dif-
ferent tumors and for distinct tumor stages [14,15]. More
recently, SKY has emerged as a powerful screening tool for
interchromosomal structural aberrations and has aided in the
characterization of complex tumor genomes [16–18]. This review
will address these three techniques in more detail, discussing
their practical application to understanding chromosome alter-
ations in cancer as well as their inherent
technical limitations. It is hoped that
after completing this chapter, the reader
appreciates the potential contained in the
combined application of these advanced
molecular cytogenetic techniques for
deciphering the complex chromosomal
rearrangements in cancer genomes.

Fluorescence in situ hybridization
FISH refers to the use of labeled nucleic
acid sequence probes for the visualization
of specific DNA or RNA sequences on
mitotic chromosome preparations or in
interphase cells (FIGURE 1). One method-
ology for labeling a nucleic acid probe, be
it DNA or RNA, is enzymatically via
either random priming or nick translation
incorporation of a fluorescent molecule-
or immunogenic hapten-conjugated
nucleotide analog. Direct chemical labe-
ling can also provide excellent probes [301].
More recently, peptide nucleic acid (PNA)
molecules have been developed, and these
can also serve as probes [19]. The hybridiza-
tion target can be either RNA or dena-
tured, single-stranded DNA. Once the
probe has been given sufficient time to
anneal to its complementary target
sequence, excess probe molecules are
washed away and the hybridization pat-
tern is visualized with a fluorescence
microscope. Of note, hapten-labeled
probes require detection with fluorescent-
conjugated antibodies. A particular chal-
lenge of FISH is the ability to detect small

DNA target sequences (i.e., less than 1–3 kb). New signal ampli-
fication techniques, such as the use of tyramides [20–23] or rolling
circle amplification [24–26], have been developed to increase signal
intensities derived from small DNA targets previously undetecta-
ble by traditional approaches. However, these methods require
considerable optimization and have not been widely used.

Probe types
The earliest applications of FISH utilized DNA probes specific
for repetitive DNA sequences, such as those found at centro-
meres and other heterochromatic regions, as they generated a
very intense signal due to the tandem arrangement of compli-
mentary sequences, and thus a very large target size [6,27,28].
The probes consisted of cloned genomic repetitive sequences.
More recently, oligonucleotide or PNA probes have been
designed that are specific for these genomic regions [19]. Unlike
the aforementioned DNA repeat probes, a locus-specific probe
(LSP) consists of a repeat-free labeled nucleic acid sequence
specific to a single region of the genome. With the recent

Fluorescence in situ hybridization
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Figure 1. Schematic representation of fluorescence in situ hybridization experimental set-up. 
Probe DNA (blue) is labeled directly with a fluorescent or a hapten-conjugated nucleotide (ovals). After 
denaturation of both target and labeled probe DNA, the probe is hybridized to the specimen on microscope 
slides. Hybridization signals are then visualized using an epifluorescence microscope.
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sequencing of genomes from numerous
organisms, including human and mouse,
the specific map location and availability
of bacterial artificial chromosome (BAC)
clones has greatly facilitated the acquisi-
tion of locus-specific FISH probes and
systematic probe collections have been
assembled (Ccap [201]).

FISH probes for larger genomic regions
such as entire genomes [29], chromosomes
[30,31], chromosome arms [32] and bands
[33] are also often used. Whole chromo-
some painting (WCP) probes originally
consisted of a chromosome-specific
library derived by the cloning of a flow
sorted human chromosome phage librar-
ies [34–39]. These were first utilized as
FISH probes in 1988 [40,41]. Another
related FISH application involved the
labeling of an entire human–hamster and
mouse–hamster hybrid cell line genome
(which contained one nonhamster chro-
mosome) and hybridizing it back onto
human or mouse metaphase spreads,
respectively [42–45]. Chromosome-specific
painting probes are now typically pro-
duced through degenerate oligonucleo-
tide primed (DOP)-PCR labeling of
flow-sorted chromosomes [30]. The use of
differentially labeled WCPs in combination, which was first
reported by Nederlof and colleagues [46], led to the develop-
ment of SKY [8,9] and M-FISH [10] as a means of simultane-
ously delineating each individual chromosome in metaphase
spreads in different colors. These methodologies are discussed
in more detail later.

Applications & limitations
One application of FISH involves the hybridization of probes
to interphase cells (FIGURE 2A). This is extremely beneficial when
it is not possible to prepare metaphase spreads. For instance,
one may wish to avoid potential artifacts associated with pro-
longed culturing of cells from a primary tumor or to screen a
large number of cells in search of an extremely rare subpopula-
tion [47,48]. Also, it is not always possible to establish primary
tumors in tissue culture. In addition, interphase FISH can be
performed on paraffin-embedded, formalin-fixed tissue sec-
tions, thereby allowing researchers to retrospectively analyze
samples and correlate chromosome aberrations with biologic
and clinical end points [12,49]. Interphase cytogenetics also per-
mits one to precisely define the cell pool carrying chromosomal
abnormalities, to identify whether aberrant cells exist in clonal
patches or as isolated events, and to observe aberrations on a
cell-to-cell basis rather than as a population. The identification
of numerical and structural chromosomal aberrations in inter-
phase nuclei has the added benefit of enabling the simultaneous

assessment of chromosomal aberrations, cellular phenotype and
tissue morphology [50,51].

Centromere-specific probes were first used to identify copy
numbers of chromosome 18 in nuclei from normal cells and
cells with a trisomy for chromosome 18 [12]. However, this
approach only selects for a very small subset of chromosomes.
From a strict cytogenetic standpoint, centromere-specific
probes can only be used to score centromere copy numbers.
Thus, locus- or chromosome region-specific probes are
extremely valuable for assessing copy number changes involving
chromosomal arms, a few chromosomal bands or specific genes.
These subchromosomal copy number changes are often seen in
solid tumors and exist as deletions, duplications, and double
minute chromosomes on the cytogenetic level.

LSPs are also very useful in identifying or further characterizing
structural aberrations (FIGURE 2B). For example, reciprocal translo-
cations can be detected with LSPs that span the breakpoint region
[52,53]. Such translocations can alter the expression of certain onco-
genes and tumor suppressor genes, giving tumor cells a selective
growth advantage. For example, tumor cells can be detected using
LSPs for the bcr/abl translocation involving genes on human
chromosomes 9 and 22 in chronic myelogenous leukemia [52] or
the translocation of the c-myc gene to the immunoglobulin H
locus in Burkitt’s lymphoma [53]. Probe kits for the detection of
above mentioned breakpoints and other relevant cytogenetic
abnormalities are available from commercial sources.

A B C

Figure 2. (A) Centromere-specific probes used for detection of chromosome copy number in interphase 
nuclei. Probes specific for the centromeres of two different chromosomes were hybridized to interphase 
nuclei. The green probe is present in two copies while the red probe indicates trisomy for this chromosome. 
The doublet observed for one of the green and one of the red signals is due to either the decondensation 
of centromere repeat regions of the genome in interphase or the fact that this particular cell is in S-phase 
and has already replicated these regions. (B) Locus-specific probes for mouse chromosomes. Bacterial 
artificial chromosome clones specific to single copy regions of the genome have been labeled with either 
Rhodamine110-dUTP (green) or digoxigenin-dUTP and subsequently detected with mouse antidigoxigenin 
followed by antimouse TRITC (red). Green signals represent hybridization to mouse chromosome 12D1 and 
red to band 12E. A chromosome 14 painting probe (yellow) was used to identify the translocation partner. 
The normal chromosome 12 (bottom arrow) shows hybridization with both chromosome 12 locus-specific 
probes (green and red) while the derivative 12 (top arrow) shows loss of the 12E region probe (no red 
signal) which occurred during the rearrangement with chromosome 14 (yellow paint). Also of note is the 
fact that there are no normal chromosome 14 in this metaphase, all having been either deleted (left) or 
rearranged (remaining three partially painted chromosomes. (C) Chromosome painting probes specific for 
mouse chromosomes 4 (yellow), 12 (green) and X (red). The chromosome painting enabled the 
identification of two translocations: T(X,12) and T(4,X).
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WCP is useful for detecting translocations between non-
homologous chromosomes (FIGURE 2C). WCPs hybridize along
the entire length of the chromosome, and the hybridization of
repetitive sequences is blocked by the addition of excess Cot-1
DNA. Painting experiments involving the use of only a few
such probes are often used to confirm a suspected chromosomal
rearrangement. Chromosome painting is also useful in the
identification of translocations involving large genomic regions,
while LSPs or collections of probes spread along the target in
close proximity and can be used for more detailed mapping.

FISH probes have been widely used for telomere shorten-
ing detection. Among these are techniques such as primed
in situ (PRINS) labeling or FISH with RNA-translated or
nick-translated, double-stranded DNA (dsDNA) repeat
probes. Long oligonucleotides have proven effective telomere
FISH probes. FISH with short PNA telomere probes yields

detection efficiencies of almost 100% and, in combination
with digital fluorescence microscopy, permit the assessment
of repeat numbers at individual chromosome ends [54].

Spectral karyotyping
Methodology
SKY is a molecular cytogenetic technique that permits differ-
ential visualization of all human or mouse chromosomes in
distinct colors with a single hybridization and image exposure
(FIGURE 3) [9,55,56]. SKY utilizes a combination of Fourier spec-
troscopy with epifluorescence microscopy and charge-cou-
pled device (CCD) imaging [57]. Human and mouse single
chromosome painting probes are generated from flow-sorted
chromosomes by DOP-PCR [58]. The probes are then PCR
labeled through the incorporation of either haptenized or
directly labeled nucleotides such that each labeling reaction

contains only one labeled dUTP (e.g.,
biotin-dUTP, digoxigenin-dUTP or
Rhodamine 110-dUTP). Using five spec-
trally distinct fluorochromes, either alone
or in combination, allows one to discern
31 different targets. The chromosome-
specific probes are subsequently pooled
together, repetitive sequences are sup-
pressed with excess Cot-1 DNA in the
hybridization mixture, and the probes are
hybridized onto metaphase chromo-
somes. Hybridized chromosomes can be
visualized using an epifluorescence
microscope equipped with a single, cus-
tom-designed triple bandpass filter that
permits the simultaneous excitation of all
the fluorochromes. In addition, the
entire emission spectrum of a metaphase,
ranging between 400 and 800 nm, can be
measured in a single exposure. A single
image containing spectral information
for each image point is acquired, and the
fluorescent intensities in the green, red,
and near infrared emission range are vis-
ualized in a standard red, green, blue
(RGB) display image (FIGURE 4A) [8,9]. An
image of the 4,6-diamidino-2-phenylin-
dole-dihydrochloride (DAPI) counter-
stain is used for chromosome banding
identification (FIGURE 4B). All pixels with
the same spectral information are
assigned a pseudocolor, which allows for
the spectral classification of all chromo-
somes. After the chromosomes are classi-
fied and aligned in a karyotype table,
interpretation and comparison of all
aberrations is summarized in the karyo-
gram (FIGURE 4C) [8,9]. M-FISH differs
from SKY in that it is only a filter-based
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Figure 3. Schematic representation of spectral karyotyping hybridization experimental set up. 
(A) Flow sorting is used to isolate individual chromosomes. (B) Each chromosome is then labeled with a 
unique combination of fluorescent dyes or haptens. (C) The hybridization cocktail (a combination of 
these differentially labeled chromosome painting probes and Cot-I DNA to suppress the hybridization of 
repeat sequences) is hybridized to tumor metaphase preparations. (D) After washes and detection of the 
hapten-labeled probes, the metaphases are imaged using a fluorescent microscope. (E) A spectrophorometer 
in the imaging system generates a spectral signature for each pixel in the image. (F) Each pixel is 
assigned a classification color based on its spectral signature. Each normal chromosome is therefore a 
single color.
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system where separate images are acquired sequentially for
each fluorochrome used. The individual fluorochrome files
are then combined to generate the final image.

Applications & limitations
SKY combines the advantages of FISH with traditional
chromosome banding techniques. SKY permits the detection of
interchromosomal structural aberrations, such as translocations
and insertions resulting in balanced as well as unbalanced rear-
rangements. It therefore facilitates the identification of cryptic
translocations and the clarification of complex aberrations
[59–67]. SKY also enables the identification of material such as
marker and ring chromosomes, the components of which are
typically unidentifiable by conventional banding techniques
[68–71]. In addition, other aberrations such as double minutes
can be better resolved, leading to the identification of critical
oncogenes [72,73].

Intrachromosomal alterations resulting in small deletions or
duplications and para- or pericentric inversions do not result in
changes in chromosome size or spectral signature of the aberrant
chromosome and therefore cannot be detected by SKY. In addi-
tion, very small marker chromosomes or double minute chromo-
somes cannot always be unambiguously classified. Ultimately, a
combination of molecular cytogenetic methods and banding
techniques will result in the most comprehensive analysis of
tumor metaphases.

Comparative genomic hybridization
Methodology
CGH utilizes the hybridization of differentially labeled
tumor and reference DNA on normal metaphase chromo-
somes to generate a profile of DNA copy number changes in
tumor genomes along the chromosome length (FIGURE 5) [7,29].
Total genomic DNA from a tumor specimen is isolated using

A B
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Figure 4. Spectral karyotyping of a normal human female metaphase. (A) Metaphase spread depicted with red, green and blue colors as determined 
by spectrophotometric analysis of each pixel in the image. (B) Inverted DAPI banding of chromosomes. (C) Karyogram containing spectral, DAPI and 
classification of each chromosome.
DAPI: 4,6-diamidino-2-phenylindole-dihydrochloride.
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standard procedures. Each genomic DNA is then differentially
labeled; the test DNA with biotin-dUTP and the reference
with digoxigenin-dUTP, using a standard nick translation reac-
tion. Alternatively, direct labeling with fluorochrome-conju-
gated dUTP may be used. The labeled genomes are pooled in
equal amounts with excess Cot-1 DNA and subsequently
hybridized to normal metaphase chromosomes. Following a
48–72 h incubation, biotin-labeled tumor DNA is detected
with avidin-FITC resulting in green fluorescence and anti-
digoxigenin and TRITC-labeled secondary antibodies are used
to detect the control DNA in red fluorescence [29,74].

Fluorescent images of chromosome metaphases are acquired
using an epifluorescent microscope (FIGURE 6A). The quantitative
measurement of fluorescence intensity values based on digital
image analysis is essential for accurate CGH analysis [75,76]. A
CCD camera and fluorochrome-specific optical filters are used
to acquire the FITC and TRITC fluorescence (for review [77]).
If the tumor karyotype is normal, the observed fluorescence
reflects an equal contribution of both the red and green fluores-
cence and thus the chromosomes will appear yellow. A gain of
tumor DNA will be visualized as green staining of the corre-
sponding region on the chromosome. Loss of a chromosome or
deletion of a chromosomal subregion will shift the resulting
color towards red (FIGURE 6B). Specialized software is used to
measure fluorescence intensity values, segment the chromo-
somes along their axes and identify and orient each chromo-
some [78]. Fluorescence ratio profiles are calculated along the
axis of each chromosome (FIGURE 6B). Ratio profiles represent

tumor genome to reference genome fluorescence hybridization
signal intensities and are indicative of copy number changes [76].
Average ratio profiles are based on the analysis of at least five
metaphase spreads (or measurements from ten copies of each
chromosome). A ratio of 1.0 indicates that no copy number
changes are present in the tumor. Typically, ratios of 0.8–0.75 or
less indicate loss or deletion of a whole chromosome or chromo-
somal subregion, whereas ratios of 1.2–1.25 or greater indicate
chromosomal gains. A ratio of 2.0 or higher represents high-
level gene amplification (FIGURE 6B). The end result of CGH
image analysis is a karyogram of tumor-specific gains and losses
along the length of each chromosome (FIGURE 6C).

Applications & limitations
CGH serves as an important global screening test for chromo-
somal aberrations present within a tumor genome. As only
genomic tumor DNA and metaphase preparations from a nor-
mal donor are needed, the challenging task of preparing high-
quality tumor metaphase spread is circumvented. Perhaps most
importantly, tumor DNA extracted from archived, formalin-
fixed, paraffin-embedded tissue can be used [79–83]. This allows
for the retrospective identification of chromosomal aberrations
and thus facilitates the correlation of cytogenetic findings with
histologic/histochemical information, clinical course and prog-
nosis [15,84]. In addition, the use of archived samples allows a
larger number of specimens to be utilized for study and pro-
vides a means of evaluating tumors that are difficult to culture.
Lastly, one is able to analyze small subregions of a histologically

defined lesion [82,83].
Another important advantage of CGH

is the requirement of very small amounts
of DNA (less than 1µg). Using modified
methods for extracting and labeling DNA
from formalin-fixed, paraffin-embedded
tissues, one can obtain sufficient amounts
of DNA required for CGH. This modest
amount of material can be easily obtained
from a routine tissue section. Concord-
ance between CGH analyses performed
on matched fresh and formalin-fixed
material is high (95%) [79,80]. In addition,
70–90% of all archived, formalin-fixed
material, including very old material and
tissue obtained from autopsies, has been
found suitable for analysis using CGH [80].
This demonstrates the benefit of this tech-
nique in retrospective genome analysis.
However, the quality of DNA extracted
from formalin-fixed samples varies greatly
and may not always result in uniform
hybridization to the chromosomes.

CGH has been utilized for the analysis
of a wide variety of tumors [85]. Chromo-
somal copy number changes have been
mapped in common neoplasms, including

Hybridization for 24–72 h at 37°C

Test 
DNA

Control 
DNA

Figure 5. Schematic representation of comparative genomic hybridization experimental set-up. 
Test DNA is labeled with biotin and normal diploid control DNA is labeled with digoxigenin. They are then 
combined (with an excess of Cot-I DNA), denatured, briefly allowed to reanneal and hybridized to normal 
diploid metaphase spreads. After detection of the biotin with avidin-FITC and the digoxigenin with mouse 
antidigoxigenin followed by goat antimouse TRITC, the metaphases are imaged, the ratio of green to red 
fluorescence intensity along the length of each chromosome plotted, and the gain/loss profiles generated.
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lung [86–91], breast [81,92–97], colon [98–103], brain
[104–107], prostate [108–113], head and neck
[114–119], hematologic [120–123], kidney [124–130],
ovary [131–136], bladder [137–142] and uterine cer-
vical cancers [143–148]. Analysis of these tumor
types has led to the discovery of general patterns
of chromosomal aberrations, with both the
number and genomic distribution of such aber-
rations defining certain tumor types [84]. For
example, extra copies of chromosomes 1, 8, 17,
and 20 are typically seen in breast cancer, along
with a loss of chromosomal arms 13q and 17p,
the loci of the retinoblastoma and p53 tumor
suppressor genes, respectively [81,93]. In glioblas-
tomas, on the other hand, a gain of chromo-
some 7 and loss of 10 appear to be a hallmark of
tumor progression [149–151].

CGH has also proven useful in establishing a
phenotype/genotype correlation in solid tumor
progression [101,143]. For example, in the case of
cervical carcinoma, CGH analysis of DNA
gathered from normal cervical epithelium, dif-
ferent stages of dysplasia and invasive carcino-
mas revealed distinct chromosomal aberrations
previously undetected with conventional
cytogenetic analysis. Specifically, a 3q gain was
observed only sporadically in severe dysplasias,
while it was observed in nine out of ten inva-
sive carcinomas [143]. This indicates that the 3q
gain is perhaps the defining aberration
required for transformation of cervical epithe-
lium from an in situ to an invasive lesion, mak-
ing genes in this region potential clinical mark-
ers for cervical dysplasia progression [13]. CGH
has been widely applied, together with FISH
and SKY, to better understand chromosomal
changes that occur in mouse models for
human diseases. The cytogenetic analysis of
murine models and their comparison to
human tumors offers the opportunity to follow
rearrangements during tumor evolution and to
identify aberrations that are conserved across
species boundaries [152].

While CGH has no doubt proven to be an accurate means
of identifying chromosomal gains and losses, it does have its
limitations [134]. For instance, since copy number changes are
detected relative to the average copy number in the entire
tumor, one is unable to determine the relative ploidy of a
given tumor. Resolution limitations also exist due to the
length of the metaphase chromosomes hybridized to. While
the smallest detectable deletion is estimated to be 3–5 Mb,
the typical resolution for identifying copy number changes is
somewhere in the range of 10–20 Mb, while high-level
amplifications can only be detected when 20–40 kbp in
length [153].

Another limitation of CGH is its inability to detect chromo-
some rearrangements that are balanced (i.e., do not result in
increased/decreased genomic content), such as inversions and
balanced translocations. In addition, it does not provide informa-
tion regarding the nature of chromosomal segments involved in
copy number alterations. Lastly, CGH averages out alterations in
genomic content over the entire tumor population. Gains or
losses are therefore only detected when they are present in greater
than 60% of the cells from which the DNA was extracted. Thus,
information pertaining to clonal heterogeneity or genetic diver-
sity is lost using this technique and tumor-specific aberrations
can be obscured if the surgically obtained specimen contains a

C D
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Figure 6. Fluorescent images of chromosome metaphases. (A) Fluorescence image of 
metaphase after CGH hybridization. (B) Close-up of chromosome 8 from metaphase in (A) 
showing two amplicons in the human breast cancer cell line SKBR3. Red bars to the left and green 
bars to the right of the chromosome ideogram illustrate those regions that are lost or gained, 
respectively. These determinations are based on the plotted ratio of green:red fluorescence 
intensity along the length of the chromosome (right). (C) CGH profiles of the entire metaphase in 
(A) without loss/gain bars. (D) Array CGH presentation of SKBR3 data. Red bars to the left and 
green bars to the right in the bar graph illustrate those regions that are lost or gained, 
respectively. Each spot on the array is plotted along the length of the chromosome 8 ideogram as 
red or green lines.
CGH: Comparative genomic hybridization.
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large population of normal surrounding tissue or infiltrating
cells. For this reason, some studies have resorted to laser capture
microdissection to isolate morphologically aberrant tumors cells
from paraffin-embedded histology sections [112,127,154–159]. There
exist a few databases worldwide that contain the CGH profiles
for numerous tumor specimens [202–205].

Some of the limitations of conventional CGH have been
overcome with the recent development of matrix or array CGH
[160,161]. Using this technique, one can hybridize total genomic
DNA to a chip spotted with BAC clones, complementary DNA
or oligonucleotide sequences. As with conventional CGH, a ref-
erence and tumor sample are labeled separately and hybridized
to the same sequences on the slide. A laser scanner is used to
acquire fluorescence hybridization signals. The analysis software
measures intensities for each hybridization spot and ratio values
between the normal reference channel and the tumor channel
are calculated. The ratio values for each gene are then plotted
onto chromosome ideograms based on their mapping position,
which results in a high-resolution mapping of specific genomic
imbalances (FIGURE 6D). The resolution that can be achieved with
this type of analysis depends on the amount of the genome rep-
resented by the spotted DNA, the length of the spotted
sequence (i.e., oligos vs. BAC clones) and the size of the moving
average used to reduce the amount of experimental noise. The
recent development of single nucleotide polymorphism (SNP)
arrays has greatly facilitated deletion detection (e.g., Affymetrix
GeneChip® Mapping 10K Array). However, the resolution of
SNP arrays is currently limited to approximately 10,000 SNPs.
One would expect that only a subset of these loci would be
informative (heterozygous). In time, SNP arrays will reach suffi-
cient resolution and other whole-genome scanning technologies,
such as the representational oligonucleotide microarray analysis
technique, will become more widely available. 

Another method, tiling path array CGH, spans the human
physical map with over 30,000 BACs and provides the most
comprehensive method for examination of tumor genomes for
regional copy number alterations [162].

 The use of FISH along with its various applications such as
CGH and SKY, have greatly enhanced the ability of conven-
tional cytogenetics to detect both numerical and structural
chromosome aberrations in human and mouse. These
advancements have had an impact on the identification of
tumorigenic events in human samples and the ability to make
useful correlations with their respective mouse models.

Expert opinion
FISH has proven useful in clinical cytogenetics to identify
marker chromosomes, detect microdeletion syndromes and in
the prenatal diagnosis of aneuploidies. A variety of probes are
commercially available for determining the copy number of
oncogenes and tumor suppressor genes. The detection of
genetic aberrations in solid tumors and hematologic malig-
nancies with FISH is a powerful method for more specific
diagnosis of some cancers and contributes to the differential
diagnosis of disease. As these technologies move from the
research bench to the clinical bedside, they will enhance the
stratification of cancer patients so that their treatments can be
more specifically tailored. A prime example of this is the fact
that breast cancer patients with Her2/neu gene amplification
are treated specifically with the monoclonal antibody trastu-
zumab (Herceptin®, Genentech, Inc.). The antibody targets
cells overexpressing Her2/neu and interferes with the protein
product of this amplified gene, thereby abrogating its effect
and controlling tumor cell growth. More progress is also
being made in the area of hematologic malignancies in terms
of designing drugs to specifically interfere with the protein
products of fusion genes.

Five-year view
Comparative cytogenetics between human tumors and their
respective mouse models will enable a further narrowing of
the regions of importance for tumorigenesis and will hope-
fully lead to the identification of specific genes whose altera-
tion is involved in tumor development. This type of analysis
will benefit from the increasing number of CGH array plat-
forms available that result in a continuously increasing resolu-
tion of mapped loci. Comparison between array CGH and
expression data obtained on the same platforms will provide a
tool to better investigate the mechanisms by which alterations
in chromosome copy number are responsible for changes in
gene expression.

One of the main applications to clinical investigation of
molecular cytogenetics is the identification of specific chromo-
some aberrations that could serve as markers for the detection
of early transformation events. For example, one of the future
goals will be the use of interphase FISH in cytologic specimens
to detect cytogenetic abnormalities in otherwise morphol-
ogical normal tissue. This will allow the identification of those
abnormal cells that will become tumorigenic [206].

Key issues

• Many tumor cells are characterized by complex chromosome rearrangements resulting in the gain or loss of specific 
chromosomal regions.

• The identification of specific imbalances has made it possible to clone the specific genes responsible for malignancy in some cases.

• The molecular cytogenetic techniques described herein allow a comprehensive and detailed analysis of complex chromosome 
rearrangements and changes in gene copy number.
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